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CHAOTIC MOTION IN A NONLINEAR OSCILLATOR
WITH FRICTION

J. Awrejcewicz*

(Received July 21, 1988)

The mechanical oscillator with dry friction, Duffing type nonlinearity and exciting periodic force is investigated. An analytical
approach is presented for finding the critical parameter sets for the Hopf bifurcation of the previous stationary state. The
numerical simulations has proved the occurrence of the strange attractor near the critical values of the parameters.
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1. INTRODUCTION

Beginning with the decisive works by Lorenz and Ueda it
appears that even in simple discrete nonlinear systems at
least of the third order for some parameter sets chaotic orbits
appear and the set which attracted them is called strange
attractor (Lorenz, 1963 ; Ueda, 1979). To date there are many
examples of chaotic motion in simple physical systems
(Troger, 1982; Szemplinska-Stupnicka, 1987 Awrejcewicz,
1986a, b, c; Kapitaniak, Awrejcewicz, Steeb, 1987). The
study of nonlinear dynamics in these simpler systems pro-
vides the advantage of less complex analysis of the behaviour
of strange attractors and, additionally, these or similar phe-
nomena can also appear in higher dimensional systems ana-
logues.

For the purpose of introducing the reader to the question
we will first present some basic ideas connected with the field
of chaotic dynamics of dissipative systems, which is now
undergoing explosive growth.

Consider the system of ordinary differential equations

X=Fy(x)y (1)

with x& R", and p= R*. We assume that F, is smooth and
depends smoothly on x. Let the curves ¢.(x, ¢) be the solu-
tions of (1) with initial conditions x. A bifurcation we define
as a transition from one topological equivalence class to
another. Let us suppose that the system (1) has an equilibrium
path e (i) with the parameter value y, at which the Jacobian
DF,, has a simple pair of pure imaginary eigenvalues A.=
+ f00 and also wo>0 and d/du(Re (A1) p=p,+0. Moreover
all the other eigenvalues possess negative real parts. There is
a theorem given by Hopf which describes the qualitative
properties of the flow near this critical value of the parame-
ter p(Hope, 1942). In this case, when a pair of complex co-
njugate eigenvalues cross from the left-hand plane
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into the right-hand plane, a stable periodic orbit is
born, and previous stable equilibrium becomes unstable. This
phenomenon is widely described in the literature (see for
instance Marsden and McCracken, 1976 ; Hassard, Kazar-
inoff and Wan, 1980 ; Iooss and Joseph, 1981 ; Holmes, 1981 ;
Guckenheimer, 1983).

Assume now that the system (1) has a periodic orbit «
for the flow ¢,,. This flow we can study in the neighbourhood
of y and ¢ using the return map I":£- £, where surface ¢
crosses @ transversally'. Let ¢ be a periodic point of period ¢
ie. I'(a)=a and "' (@) #a for 0<n<gq. For the map, a
periodic orbit associated with ¢ is the set

a={a, I'(a), I'(a), -, """ (a)} (2)

If 4=1 we have a periodic orbit with the period 1 and in
this case the map has a fixed point a,. The Jacobian DI (a,)
gives information about the flow near the periodic orbit ¢. If
every eigenvalue of DI'(a,) possesses an absolute value
smaller than 1 then the periodic orbit is stable in the
Liapunov sense and all trajectories in the neighbourhood of ¢
approach it as f— oo, If at least one of the eigenvalues has an
absolute value greater then one, the considered periodic orbit
is unstable. In this case bifurcation of the periodic orbit
appears (secondary type bifurcation). Let us suppose that a
pair of complex eigenvalues of D/ (¢) cross the unit circle at
n=y,. The flow ¢, for x>y, has an invariant torus which
contains periodic or quasiperiodic orbits. But in some cases
with the further changing of the parameter y the attractor
grows and starts to warp, eventually becoming the strange
attractor (Aronson, et. al., 1982).

As Ruelle suggests however, there is as yet no completely
satisfactory mathematical definition of the strange attractor
which is universally accepted (Ruelle, 1980). For our purpose
we will say that the considered dynamical system governed
by equations set (1) has a strange attractor if there is an orbit
which does not appear to converge to classic attractors as a
fixed (equilibrium) point, a periodic orbit or quasi periodic
orbit. Additionaly, the strange attractor has certain prop-
erties which allows us to investigate this new dynamical
phenomenon.

Grebogi et. al. distinguish the strange attractors which are
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chaotic and non-chaotic. The word strange refers to the
geometry or shape of the attracting set, while the word
chaotic refers to the dynamics of orbits on the attractor. The
dimensions of the classical attractors are integer, (the equilib-
rium point has zero dimension; the limit cycle has one
dimension), while the dimension of the strange attractor is
not integer but fractal. Additionaly, the trajectories belong-
ing to the strange chaotic attractor have the property known
as “sensitive dependence on initial conditions” and the power
spectra of dynamical variables are broadband. For the cha-
otic orbits the distance between two points that were initially
very close to each other grows exponentially fast on the
average. The largest Liapunov exponent describes this rate
of separation between two orbits, and if this exponent is
positive we define this attractor as a strange chaotic.

For the complicated dynamical systems there are no gener-
ally efficient analytical methods of solving the adequate
equations set and numerical methods based on the initial
value problems are generally poor. However, one can avoid
these problems by using recurrence map consists in the reduc-
tion of the dimensionality of the problem by one unit, which
is accomplished by the elimination of one variable via a
suitable “surface of section” (Gumowski, Mira, 1980). For the
periodically excited systems in an »-state variable problem it
is very convenient to use a poincaré section. In this case a
natural samling rule is to choose time ¢, =»n T + 7, and then to
calculate the discrete values of the dynamic variables at this
discrete time, where 7" is a period of exciting force (Moon,
1987). For our purposes we then use the Poincaré section to
discover the strange chaotic attractor in the considered
forced oscillator with friction.

Strange attractors have been usually sought in a random
way and it has been difficult to present a general method to
discover them. On the other hand, the transition to chaos in
the forced oscillators is connected with a sequence of succes-
sive bifurcations which precede this irregular motion. Ruelle
and Takens were the first to suggest that strange attractors
could arise after a finite sequence of bifurcations and might
provide models for complicated ones (Ruelle, Takens, 1971).
The scheme which is given by Ruelle and Takens shows how,
after three, two or even one Hopf bifurcations, the system can
undergo a subsequent transition to chaos.

In this paper it will be shown how chaos can arise after the
Hopf bifurcation of the stationary state with one frequency.

2. THE ANALYSED SYSTEM, HOPF
BIFURCATION FOR vA>1 AND
NUMERICAL RESULTS

The equation of motion for the analysed oscillator is:

mx +kox +kix®=mg (posign(vo— %) — (vo— %) +
+ 8 (o= £)°) + Pocos wt, (3)

where m is mass of a vibrating body, 4, and £, are stiffness
coefficients, u,, @ and g are friction coefficients, Pyand w are
adequate amplitude and frequency of exciting force and v, is
the velocity of the tape, on which lies the vibrating body. As
is well known in such autonomous systems the self-excited
vibrations can appear, which are caused by friction. The
situation, however, is more complicated when a system is
excited by harmonic force. We consider two cases with
regard to the argument of sign function, because in both cases

we will obtain the different bifurcation equations after using
an averaging procedure. The case v,= ¥ means that the body
with mass m does not move with respect to the tape.

From Eq. (1) we get :

v +y+ay*=bsign(l—y')—e(l—y") +
+h(1—-y')*+qcos vr, (4)

where :

b= pogvo ' (ko/ m) V2,
e=ga(ke/m) "%,

h=Bavi(ko/ m) V2,

qa=Pom 'vs' (ko/m) " (5)

y=(ko/m) *xv5",

T = (ko/m) L,

v=(m/ko) " *w,

a=mkiviks®,
The operator (‘) means differentiation with regard to ¢, and
(') with regard to r. Supposing that the system has a solu-
tion

y = Ao+ Aicos vr + Bisin vr, (6)
and that yA>1 (where A= (A%?+ Bf)'?) the Eq. (2) gives

KA+ LB, —q+46(1— (vA) 31727 =0,
KB — LA, =0,

A1+ a A3+5-47) )= n( 10747 )+ o
+b<2» %arc cos (vA) ")ZO.

K =1-y"+3aA}+3-ad?,

L=y@h=o)+ 5 A2 )
Consider the perturbated solution

ve=Ao+ (A4, +E(r)cos vr+ (Bi+7(r))sin vr, (8)
and taking into account the assumption that the coefficients
b, e, h are small and £ and 7’ are slowly changing function

of r from Eq. (4) one can obtain :

—2uE" +ME+ Np=0,
2un’+ PE+ Rp =0, (9)

where :

M= '%'AlBla+ ev—3hy —%hﬁA%—- —:j—kpf‘Bf,

N=1-y*+34%a+ SBia+S Ata—3 4B,
P=1-v+ 34+ A+ Bra+ Sh 4B+
o A0A (1
+zwz/l‘(l u2A2> ’
R:r:—g--AlBla~eu+3uh+ %—hy3A§+%hy3Bf+
468" 1\
(1) 10

The necessary condition for Hopf bifurcation to appear (see
for instance (Arrowsmith, Taha, 1983)] leads to:

R—M=0, (1D
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Fig. 1 Phase portraits of the analysed system: a=3., h=.05 ¢=.5, 6=.08, v=1.4. (@) g=.1; () ¢=1.5;(c) ¢=2.5; (d) ¢=4.
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Fig. 2 Frequency spectra obtained using Fast Fourier Transform for the parameters as in Fig. 1.
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PN —MR>0. (12)

The Eq. (9) and Eq. (11) are the bifurcation equations. The set
of parameters which satisfy these equations and the inequal-
ity (12) is a bifurcation vector. In order to obtain this vector,
a, v. h, e, and b are fixed for each step of iteration and then
the Monte Carlo method with lottery-drawing generator of
number was used to solve the bifurcation equations in regard
to unknown parameters A,, A, B, and ¢. Only the isolated
solution was found succesfully (a, v, h, e, b, ¢)=(1., 1.5, .05, .
5, .58) which satisfy inequality (12).

The Eq. (4) was solved numerically using modified Runge
-Kutta method for the parameters lying nearby the bifurca-
tion vectors. All calculations were made with the initial
conditions y (0) =y (0) =0, and the phase portraits were
recorded from time 7., =80 t0 Twaxr=120 wehere the tra-
jectory has reached finally attractor. The question arises,
however, whether with the changing of the initial conditions
the trajectories can reach another stable attractor. Examples
of this kind of coexistance of a “strange attractor” and a
large periodic orbit were given by Holmes and Stupnicka
-Szemplinska (Holmes, 1979 ; Stupnicka-Szemplinska, 1987).
In these cases, for some initial conditions the trajectory
reaches a strange chaotic attractor, whereas for the others a
stable limit cycle. In our example we have changed the initial
conditions in the neighbourhood of the point (0, 0) but we have
not detected another attractor.

Now we present using phase portraits, the characteristic
behaviour of the evolution of attractors firstly with the
change in parameters ¢, b and then secondly with the ampli-
tude of dimensionless exciting force ¢. In Fig. 1(a) for ¢ =90.1
we have obtained a periodic orbit. With a further increase of
this parameter value the trajectories start intersecting each
other (Fig. 1(b)) and then for ¢ =2.5 chaos has appeared.

The characteristic picture of the strange chaotic attractor
is shown in Fig. 1{c). The corresponding Fourier spectra are
presented in Fig. 2. The most irregular spectrum is obtained
corresponding to the ¢ =2.5. It resembles a broad band and
testifies that the motion is chaotic. For regular motion, the
Fourier spectra possess only descrete values. We have also
presented the view of a strange chaotic attractor using the
Poincaré section {the method of construction was described in
sec. 1). For the parameters (3., 1.5, .05, .5, .08, 2.5) the strange
chaotic attractor is presented in Fig. 3.
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Fig. 3 Poincaré map for the parameters of the Fig. 1(c).

3. HOPF BIFURCATION FOR yA<1
AND NUMERICAL RESULTS

Doing similar as in previous case for y4>1 we get :

KA+ LBi—q=0,
KB\— LB, =0,
3

A1+ a{ A3+ 3 2%))+ o= {1+ 320 b)=0. (3)

Taking into consideration the perturbation solution (8) we
have :

=2vE M E+N =0,

2up'+ P E+ R =0, (14)
where :
M =M,
N'=N,
'Pufl_ 24 2 Q 2 3 2 3 3
=1—v 3AOQ+4/11(l+'471?1(l+72'1418l111/'
R =3 ABia—cv+3hy+ ; OB+ RCBL(15)

In this case the necessary conditions for Hopf bifurcation
are:

2(3h—e) +3hv*A =0, (16)
P'N°—M°R">0, (17)

From Eq. (16) we obtain that e (3%, 4.5k)-in further cal-
culations we take ¢=4h-while from Eq. (13) we get :

Ad+ L1492 a0 an—b=0, (18)

This equation has only one real root

Ao=((—g+ (g*+p)"H) P+
_((g+(g2,+,p3)1x2)1'3' (19)
where :
—2h=b  _1(1 1
8= b 3<(I+y2>. (20)

Taking arbitrary the parameters ¢, 4 and & for v= (0.1,
10.) we calculate the value

q*= ‘57((1"1/24*3/1/4%4- 3a >2 nv? )

i) P

1 21

and then verify the condition yA <1 and inequality (17). We
have found the solution: y=2.1, ¢*=.01, «=10., b=.1,
h=.1

The numerical experiments have been done for the parame-
ters set near these found analytically. In this case, after the
Hopf bifurcation of the periodic orbit the regular two fre-
quencies motion has appeared (Fig. 4).
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Fig. 4 The evolution of the phase trajectories for vA<1: ¢«

=.085, (¢) b=.1, (d) b=1.005.

4. CONCLUDING REMARKS

The paper presents the analytical approach leading to
detection of chaotic motion on the example of the nonlinear
oscillator with friction. Based on the approximate method,
we have chosen such critical parameter sets for which the
Hopf bifurcation of the periodic motion with one frequency
will occur. Two cases (vA >1 and vA <1) were considered. In
the first case chaos was found for the parameters nearby
critical set, while in the second after Hopf bifurcation of the
periodic orbit the new regular motion with two frequencies
has appeared.
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